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Abstract—A numerical solution of the equations governing the flow of an electrically conducting, viscous,

compressible gas with variable fluid properties in the presence of a uniform magnetic field is obtained.

The velocity and temperature distributions for subsonic and supersonic flows as these occur in the duct
of an MHD generator are analysed.

INTRODUCTION

THE PROBLEM of fluid flow and heat transfer in
the duct of a magnetohydrodynamic (MHD) power
generator, while important for the calculations of
almost all the characteristics of the generator, is
rather complex for analytical solutions. The governing
equations are coupled nonlinear equations and prob-
ably because of this reason, the attempts in this
direction are meagre although experimental studies
have been made by several authors [1-3] to under-
stand the flow behaviour.

Earlier, calculations for electric current density,
power, efficiency, etc. were made using the one-
dimensional form of the averaged governing equations
of fluid flow and heat transfer, as was pointed out by
Blackman et al. [4],

It is impossible to solve completely the MHD generator
problem including viscosity, compressibility, heat trans-
fer, nonscalar conductivity, etc. As a compromise, how-
ever, one can consider briefly the status of a ‘model’
which in the literature of MHD power production (one-
dimensional hydraulic calculations) has been judged as
an adequate starting point for engineering calculations.

But these assumptions obliterate most of the import-
ant features of the problem and do not give an account
of various losses due to viscous and thermal boundary
layers.

Later, to study the effect of viscous boundary layer
on electric current and potential distribution and
other characteristics of the generator, some authors
used a boundary-layer-type velocity profile [5,6]
based on the empirical relation. This empirical
relation gives the behaviour of velocity as a function
of the normal distance, if one knows the boundary-
layer thickness of the flow a priori and if this does
not vary with any other fluid property or channel
configuration. Besides other weaknesses, this type of
velocity and temperature profiles have gradients
which are discontinuous on the boundary, and hence
the conclusions based on the studies using these
profiles would be doubtful.
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Doss et al. [7] have made claims to have developed
some computer codes for generating the velocity and
temperature profiles. But neither their solutions nor
any other method for solution is available in the
published literature. Gertz et al. [8] have given
another approximate representation for these profiles
using momentum integral method. Vanka and Ahluw-
alia [9] have obtained the approximate solution
which should predict three-dimensional flow and
thermal development in MHD channels based on the
calculation procedure suggested by Patankar et al.
[10] for three-dimensional hydrodynamic parabolic
flows.

In this paper, the numerical solutions of the equa-
tions governing the laminar fluid flow and heat
transfer in the boundary-layer region of the electrode
walls of the duct of an MHD generator are presented.
The method used is an improvement over the Patan-
kar and Spalding [11] technique as modified by Arad
et al. [12] for the solution of boundary-layer equations
for viscous compressible fluids without magnetic field.
The strong Joule heating effects in the boundary-layer
region over the electrode walls add to the difficulties
of the numerical solution of these equations. In this
case, the gradients get sharper and therefore the
solution procedure followed in hydrodynamic flows
cannot be directly used for MHD flows with large
interaction parameter. It is probably due to this
reason that Vanka and Ahluwalia [9] in their analysis
have considered a subsonic flow with small interaction
parameter.

The numerical solutions giving velocity and tem-
perature profiles are analysed for combustion product
plasma and argon—potassium plasma which are the
usual working fluids for open-cycle and closed-cycle
generators, respectively. These plasmas are treated as
a partially ionized gas with variable fluid properties
like viscosity, thermal conductivity, electrical conduc-
tivity, etc. For combustion product plasma, a super-
sonic flow with high interaction parameter is con-
sidered, while for argon-potassium plasma a subsonic
flow is considered.
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NOMENCLATURE

B, applied magnetic field Greek symbols
E,, E, electric field components B. Hall parameter, w,z,
H height of the channel il ion slip parameter, w;T;
I interaction parameter, LooBZ/pou, Y ratio of specific heats
J current density 0 boundary-layer thickness
K load parameter n, w, A dimensionless Cartesian coordinates
L characteristic length T shear stress
M Mach number 1] streamfunction
Nu Nusselt number, p density

—(k0T/0y)y=o/k (T, — T,) u dynamic viscosity
Pr Prandtl number, pocy/kq o electrical conductivity.
Re Reynolds number, LUpo/to
T temperature Subscripts
c, specific heat at constant pressure g gas
¢, specific heat at constant volume w wall condition
h enthalpy X,y components in x, y directions
k thermal conductivity 0 entrance condition
p pressure o] free-stream condition.
u, v velocity components.

MATHEMATICAL FORMULATION

Considering the flow of a viscous compressible gas
in a linear MHD duct of constant cross-section, the
direction of the flow is taken as the x-axis. A constant
magnetic field is acting uniformly in the z-direction.
The electrodes placed at y = 0 and y = H are main-
tained at a uniform temperature 7. These electrodes
are connected to an external load to draw the power.
The magnetic Reynolds number of the partially ion-
ized gas as considered in the present case, is very
small (O =~ 10~ *)and hence the induced magnetic field
is neglected in the analysis. The walls perpendicular to
the z-axis are perfect insulators and they are separated
sufficiently to make the two-dimensional analysis
valid. The transport coefficients of the gas, the vis-
cosity, thermal conductivity, electrical conductivity
and Hall and ion-slip parameters are taken as func-
tions of temperature.

For such a system, the components of velocity V,
the magnetic field B, the current density J and the
electric field E are

= (u,0,0) (1)
B = (0,0, B,) ¥)
J = (jxJy,0) &)
E=(E,,E,,0. @

The equations governing such a two-dimensional,
steady-state flow in nondimensional form [15] are
written as

0 0
P+ a—y(pv) =0 &)

1| éf ou o ou .
* F[a‘(“a‘) 5l 5)] o

1 0
RePr[&x(k_
+(y— l)Mé[

C — 2
+ ﬂ(% + @) ] — 4ﬂ_(y __I)M_O%?Lv

Re\ay T ox Re  oxdy
I%;j—:’l; ®)
p=pT 9
o= B o)~ BE, — ] (10
Jy = el =0+ BLE+ ) (1)

The variables u, v, p, p, T and the transport
coefficients u, k, o, etc. are nondimensionalized with
respect to their respective values at the inlet of the
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channel denoted by the subscript zero. For spatial
coordinates, L, the length of the channel, is used for
this purpose. Here

(12
(13)

Re = potigLfiig
I = 6oB3L/poto

Pr = pge fkq (14)
M3 = poti5/ype (15)
ae = 1 + 5e5i' (16)

Making the usual boundary-layer approximations
that the diffusive effects {(due to finite values of z and
k) are important only in a small layer of thickness

d ~ O(1/./Re) and
v,jx = 0(3) {7
while
u i~ o (18)
ol =
equations (5)-(8) are written as
i 8
e+ a_y(p”) =0 (19)
Ou _duy 1 op
"(“556 " ”a_f> T
8 ou s
+ 5}(‘“6_?) + o' I(K — u) 20
W2y ) Lo o
P ¥ T %5) T Pray\dy
3 k\éfu?
— 22 DA Nhullt Bl
o236
+— YMIIKK —u)  (21)
where
. - ,_ G
¥ = y/Re, ? = v/ Re, G_M1+5eﬂs
and
u2
h=T+(— DM
K is the load parameter defined as
Ey = KugBo. {22)

These equations are solved with the boundary con-
ditions
b=u=0 T=T, at

u-u, and T—-T, as

Uy, T, and dp/0x are to be determined from one-
dimensional equations for free-stream flow given by

Pother = 1 25)
du,, 1L dp_ 0
E de =0 I(K um) (26}

d Su
a{'fw +{y - 1)M0“”2“]

=0 Iy — DMEK(K —u,) (27
P=pTe=Tyluy (28)

and the initial conditions
pP=pe=U,=T,=1 at x=0 (29)

The wall shear stress 7, and the Nusselt number
Nu are defined as

du
Ty = (ﬂ a)y:o (30}
¢ = Tu/(0ot%/2) (31
Ny = — (k 5775)’),_,::: (32)

kos(Tw - Tw)’

This completes the mathematical formulation of the
problem assuming that the variations of g, &, o, 8,
and B, are known for the specified gas.

SOLUTION PROCEDURE

Parabolic equations (19)—.1) with boundary con-
ditions (23) and (24) are solved numerically following
the Patankar and Spalding [11] method with modifi-
cations.

First Von Mises’ transformation is used to trans-
form the equations in terms of (x,y) coordinates
instead of (x, y), where the streamfunction y is defined
as

_
PU=5y (33
__%
po=—= (34)

so that continuity equation is satisfied automatically.
Then using the transformation

o= Yy

Ul (35

where Yg(x) = yIJEo ¥(x, y), equations (20) and (21) are

written as

ax o\ dw (36)

_5_3‘92 + bwad}(c@) +d
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where

__ L 1ldp UK

puyM3dx pu

N R AN N s
o ”M°[aw<“*m)mz(7>
L PIKKK — u)jl.

pu

Although this transformation makes the domain finite
(0 < w £ 1), the (x,w) coordinate system introduces
a singularity in the derivative at the wall. To resolve
this difficulty Berger et al. [18] suggested the trans-
formation

o= (37)
so that equatton (36) has the form
0 b.op_10(cid
ax T3t T az(u a)te 68

Equation (38) can be solved using a finite-difference
grid which covers all the boundary layers without
wasting points in the potential area. To improve the
accuracy of numerical calculations, it was suggested
that one should take a denser grid in a cross direction
near the wall where strong velocity gradients occur,
instead of using the wall functions as suggested by
Patankar and Spalding [11]. Hence a variable grid
with a small mesh size near the wall is suggested.
Although the transformation (x, A) also gives a certain
condensation of the mesh near the wall, this is not
sufficient. Hence the following transformation from A

to i is taken:
1 = l
tan< ) A tan( >

where the value of the constant A is chosen judiciously
to improve numerical efficiency. This is achieved by
having at least half the grid points in the first percent
of boundary-layer width and a reasonable number of
points near the potential flow boundary.

With the new coordinate system equation (38) is
transformed as

'z—¢+bKa—¢=Ai CA%’- +d
ox on an on

(39)

(40)

where

_ Atan*(1/A4) cos*(n/A)
2tan(n/A)

A
and

A= %sin(Zr;/A).

NUMERICAL SOLUTIONS AND ALGORITHM

Equation (40) is solved following a forward time-
marching scheme and converting the differential equ-
ation as a difference equation with unequal intervals,
using a central difference scheme for n and forward
difference scheme for x. Thus (40) is transformed as

Ai—1¢:‘~l + Bi—ld)lt'( + Ci—ld’?ﬂ =D;_y,

i=23..,N-1 (41)

where N denotes the number of grid points across
the boundary layer. The expressions for 4;,_,, B; |,
C;-, and D;_, for velocity u and enthalpy h obtained
from equations (36)—(40) are written as

A = [bAY — Ay — AT (42)
1 AR ’ 7 7
B,_, =[A—x+b/\ﬂ — AP — cAP; (43)
C, | =[bAx — cAd’ — cAT']; 44)
#r !
D. . =
i—1 l:d + AX ' (45)
where
¢ = oi(cA)iy + BileA) + yileA); -y (46)
Defining
Hl=n,—n;_yand H2 = n;,, — 1 (47)

o, B,y and &, B, ¥ are given in terms of H1 and H2
as

o H1 . 2
"7 H2H1 + H2Y 7 H2(H1 + H2)
, _H2-HI1 . =2
bi=mixm B"‘mtz
—H2 2

’

" HIHL + HYY “8)

" = H(H + Y
k denotes the grid points in the streamwise direction.
As is clear from equations (41)-(46), to know ¢¥,
¢*~ ! should be known. Thus ¢? can be calculated
only in terms of ¢!, and hence initial profiles for
velocity and temperature are needed. In the present
calculations, the profile given by Taylor et al. [16]
is used, with very small values of boundary-layer
thickness o.

Equation (41) represents a system of equations with
a tridiagonal matrix which can be solved easily by
any standard method. The end points ¢% and ¢% are
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determined from the boundary conditions at the wall
and at the edge of the boundary layer as given by
equations (23) and (24). u,, and T, for equation (24)
are obtained by numerically solving equations (25)—
(28) by the fourth-order Runge-Kutta method.

The density variation is calculated from the relation
p=poTy=pT (49)

giving p = p,, T,,/T.
The normal coordinate y is computed using a
fourth-order integration algorithm given by

Vi=Yi-; +(Hl + H2)
1foyy  2{dy 1foy
x [6(6»7),- * 3(«%7)1 * 6(6»7)_2] 0

oy _ 2y [1+ Attan®(1/4)]
o~ pud tan(1/A)

where

N

NUMERICAL RESULTS AND DISCUSSIONS

The simultaneous system of algebraic equations
(41), along with equations (42)—(51), is solved numeri-
cally on computer Cyber-730 system. The integration
step in the x-direction is taken in such a way that it
always satisfies the condition

Ax < 8/2. (52)

The number of grid points across the boundary
layer are chosen so as to give a good description of
the viscous layer. For the present calculation, 100
grid points are taken. But this number can vary
between 50 and 150 depending upon the nature of
the problem. For N > 150 or N < 50 oscillations of
the solution appear, which could be due to computer
round-off errors.

Numerical calculations are made for two character-
istic conditions. The first case (a) deals with the
supersonic flow of combustion product plasma used
in open-cycle generators. Typical values are listed in
Table 1. The second case (b) is for subsonic flow
of argon—potassium plasma used in nonequilibrium
generators, whose typical properties are listed in Table
2. Two values of wall temperature are considered to
know its effects on the flow. The variation of viscosity
and thermal conductivity is governed by the relations

u=024137 + 0.75863T (53)
k = 094777 — 3.58822T + 3.64045T%  (54)

as given by Rohatgi et al. [17] and
Be oc TV, Bioc TV (55)
The variation of electrical conductivity is taken as
=T (56)

and

T4 1
o = JiEerp| —12:5909| -~ 1 (57)

Table 1. Typical properties of combustion MHD plasma
Gas

combustion products of
hydrocarbon fuel in air

Seed potassium = 2.0% (by weight)
Pressure Py =3 bar

Velocity Uy=1500ms™*

Temperature T, = 2600K

Temperature at the wallT,, = 1500, 1250 K
Magnetic flux density B, =2T

Ratio of specific heats y =12

Thermal conductivity ko = 0.18kgms 3K ™!
Electrical conductivity ¢, = 11.5Sm™!

Viscosity Ho = 9.625251 x 10" 3kgm™'s™!?
Molecular weight 30kgkmol ™!

Length 2m

Load parameter 0.6

Table 2. Typical properties of argon—potassium plasma

Gas argon

Seed potassium = 0.4% (by weight)
Pressure P, =1 bar

Velocity Uy =500ms™!

Temperature T, = 2000K

Temperature at the wall T, = 1500, 1250K

Magnetic flux density B, =02T

Ratio of specific heats y = 1.67

Thermal conductivity ko, = 7.60736 x 10" 2kgms 3K ™!
Electrical conductivity oy = 26.07211Sm™!

Viscosity o = 9.74055 x 10" kgm~*'s7!
Molecular weight 39.94kgkmol !

Length 2m

Load parameter 0.5

for combustion product plasma and argon—potassium
plasma respectively, where

T, = 0.5T,[1 + /(1 + 0.00003966u>U2B2)] (58)

as given in ref. [19].

With the above values of the parameters character-
izing the flow, the variation of the velocity components
u, v and temperature T in the boundary-layer region
is obtained, as is discussed below.

Case (a)

The free-stream values of u, T and pressure gradient
for the supersonic flow of the combustion product
plasma are shown in Fig. 1. As is seen from the graph,
the velocity decreases rapidly while the temperature
increases slowly. The axial pressure gradient is positive
and increases.

The profiles for u and T progressing along the
streamwise direction are given in Figs. 2 and 3 for
the two values of the wall temperature. The profiles
get more and more curved as the flow progresses.
There is no significant difference in the profiles when
the wall temperature is reduced. The flow gradients
increase marginally and the boundary-layer thickness
decreases.

The variation of the skin friction coefficient ¢; and
the Nusselt number Nu is plotted in Figs. 4 and 5.
Both ¢ and Nu decrease as the flow progresses. When
the wall temperature is reduced, the Nusselt number
is reduced and the skin friction coefficient is increased.
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F1G6. 1. Free-stream values of velocity, temperature and
pressure gradient for combustion product plasma—case (a).

But the effect of the wall temperature is more on the
Nusselt number compared to its effect on the skin
friction coefficient.

Since the generated power decreases as a result of
the growth of the boundary layer, for any value of
x, the generated power is more for T, = 1250K
compared to T, = 1500 K. Thus the losses due to the
boundary layer are more compared to the effects
of the reduced electrical conductivity due to wall
temperature. With the decrease in the wall tempera-
ture, the flow separation can also be delayed as the
skin friction coefficient is increased in this case.

Case (b)

The results of subsonic flow of argon-potassium
plasma with nonequilibrium conductivity are plotted
in Figs. 6~10. Figure 6 gives the free-stream values of
the velocity temperature and pressure gradient. In

0.0t5
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FI1G. 2. Progress of the profiles of velocity and temperature
for T, = 1500 K for combustion product plasma—case (a).

this case, the velocity and negative pressure gradient
increase while the temperature decreases. But as the
interaction parameters and the Mach number are
small, the variation is very slow.

Figures 7-10 show the behaviour of the flow
variables with respect to axial distance and the wall
temperature. The general characteristics remain the
same as for the supersonic flow but the difference in
the values of the skin friction and the Nusselt number
for the two wall temperatures is more in this case.

A comparison of the supersonic and subsonic flows
show that as a result of the heat friction or the
conducted heat, the density decreases in the boundary
layer, which leads to an increase in the boundary-
layer thickness for the subsonic flows with the same
Reynolds number. The transverse gradients of the
flow variables decrease faster for the supersonic case
compared to the subsonic flow.

0.015

YA 00075 [~

FIG. 3. Progress of the profiles of velocity and temperature for T, = 1250K for combustion product
plasma—case (a).
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(a) T = 1500 K
(b) T,y = 1250 K
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FIG. 4. Variation of skin friction coefficient for case (a) with FiG. 6. Free-stream values of velocity, temperature and

T, = 1500 and 1250K. pressure gradient for argon—potassium plasma—case (b).
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ECOULEMENT ET TRANSFERT THERMIQUE DANS LE CANAL D'UN
GENERATEUR DE PUISSANCE MHD

Résumé—On obtient une solution numérique des équations gouvernant I'écoulement d’un gaz compressible,

visqueux, conducteur ¢lectrique, a propriétés variables, en présence d'un champ magnétique uniforme. Les

distributions de vitesse et de température sont analysées pour des écoulements subsoniques et supersoniques
tels qu’ils sont réalisés dans un générateur MHD.

STROMUNG UND WARMEUBERGANG IN EINEM MHD-GENERATOR

Zusammenfassung—Die Grundgleichungen fiir die Stromung eines elektrisch leitenden, zihen, kom-

pressiblen Gases mit nichtkonstanten Stoffeigenschaften werden fiir den Fall gelost, daB ein gleichmaBiges

Magnetfeld der Gasstromung iiberlagert ist. Dabei werden Geschwindigkeits- und Temperatur-Verteilung
bei Unter- und Uberschall-Strémung in einem MHD-Generator untersucht.

TEYEHHE TA3A U TEIUJIOITEPEHOC B KAHAJIE MI'I-TEHEPATOPA

Annoramus—TIlonyveHo MMCNIEHHOE pellEHHE yPaBHEHHH, OMMCHIBAIOLINX TEYEHHE IJIEKTPOTNPOBOJHOTO

BA3KOTO CKHMAEMOrO ra3a ¢ MepeMEHHBIMH CBOHCTBAMH B OJHOPOAHOM MAarHHTHOM IIOJiE. AHAJIM3H-

PYIOTCSl pacnpelesieHdst CKOPOCTH M TEMMNEPATYpLl MPH JO3BYKOBBIX H CBEPX3BYKOBLIX TEYCHHAX B
kaHane MI'JI-reneparopa.
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