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Abstract-A numerical solution of the equations governing the flow of an electrically conducting, viscous, 
compressible gas with variable fluid properties in the presence of a uniform magnetic field is obtained. 
The velocity and temperature distributions for subsonic and supersonic flows as these occur in the duct 

of an MHD generator are analysed. 

INTRODUCTION 

THE PROBLEM of fluid flow and heat transfer in 
the duct of a magnetohydrodynamic (MHD) power 
generator, while important for the calculations of 
almost all the characteristics of the generator, is 
rather complex for analytical solutions. The governing 
equations are coupled nonlinear equations and prob- 
ably because of this reason, the attempts in this 
direction are meagre although experimental studies 
have been made by several authors [l-3] to under- 
stand the flow behaviour. 

Earlier, calculations for electric current density, 
power, efficiency, etc. were made using the one- 
dimensional form of the averaged governing equations 
of fluid flow and heat transfer, as was pointed out by 
Blackman et al. [4], 

It is impossible to solve completely the MHD generator 
problem including viscosity, compressibility, heat trans- 
fer, nonscalar conductivity, etc. As a compromise, how- 
ever, one can consider briefly the status of a ‘model 
which in the literature of MHD power production (one- 
dimensional hydraulic calculations) has been judged as 
an adequate starting point for engineering calculations. 

But these assumptions obliterate most of the import- 
ant features of the problem and do not give an account 
of various losses due to viscous and thermal boundary 
layers. 

Later, to study the effect of viscous boundary layer 
on electric current and potential distribution and 
other characteristics of the generator, some authors 
used a boundary-layer-type velocity profile [S, 61 
based on the empirical relation. This empirical 
relation gives the behaviour of velocity as a function 
of the normal distance, if one knows the boundary- 
layer thickness of the flow a priori and if this does 
not vary with any other fluid property or channel 
configuration. Besides other weaknesses, this type of 
velocity and temperature profiles have gradients 
which are discontinuous on the boundary, and hence 
the conclusions based on the studies using these 
profiles would be doubtful. 

Doss et al. [7] have made claims to have developed 
some computer codes for generating the velocity and 
temperature profiles. But neither their solutions nor 
any other method for solution is available in the 
published literature. Gertz et al. [S] have given 
another approximate representation for these profiles 
using momentum integral method. Vanka and Ahluw- 
alia [9] have obtained the approximate solution 
which should predict three-dimensional flow and 
thermal development in MHD channels based on the 
calculation procedure suggested by Patankar et al. 
[lo] for three-dimensional hydrodynamic parabolic 
flows. 

In this paper, the numerical solutions of the equa- 
tions governing the laminar fluid flow and heat 
transfer in the boundary-layer region of the electrode 
walls of the duct of an MHD generator are presented. 
The method used is an improvement over the Patan- 
kar and Spalding [ 1 l] technique as modified by Arad 
et al. [12] for the solution of boundary-layer equations 
for viscous compressible fluids without magnetic field. 
The strong Joule heating effects in the boundary-layer 
region over the electrode walls add to the difficulties 
of the numerical solution of these equations. In this 
case, the gradients get sharper and therefore the 
solution procedure followed in hydrodynamic flows 
cannot be directly used for MHD flows with large 
interaction parameter. It is probably due to this 
reason that Vanka and Ahluwalia [9] in their analysis 
have considered a subsonic flow with small interaction 
parameter. 

The numerical solutions giving velocity and tem- 
perature profiles are analysed for combustion product 
plasma and argon-potassium plasma which are the 
usual working fluids for open-cycle and closed-cycle 
generators, respectively. These plasmas are treated as 
a partially ionized gas with variable fluid properties 
like viscosity, thermal conductivity, electrical conduc- 
tivity, etc. For combustion product plasma, a super- 
sonic flow with high interaction parameter is con- 
sidered, while for argon-potassium plasma a subsonic 
flow is considered. 
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NOMENCLATURE 

&I applied magnetic field Greek symbols 

E,, E, electric field components 8, Hall parameter, 0~7, 

H height of the channel Pi ion slip parameter, miti 
I interaction parameter, La&/p,uO Y ratio of specific heats 
J current density s boundary-layer thickness 
K load parameter q, o, I dimensionless Cartesian coordinates 
L characteristic length shear stress 
M Mach number ;, streamfunction 
NU Nusselt number, P density 

-(kWdY),=,lUT, - T,) P dynamic viscosity 
Pr Prandtl number, p&k,, a electrical conductivity. 
Re Reynolds number, LUop,Jpo 
T temperature Subscripts 

C P 
specific heat at constant pressure g gas 

C” specific heat at constant volume W wall condition 
h enthalpy x> Y components in x, Y directions 
k thermal conductivity 0 entrance condition 

P pressure co free-stream condition. 

u, 0 velocity components. 

MATHEMATICAL FORMULATION 

Considering the flow of a viscous compressible gas 
in a linear MHD duct of constant cross-section, the 
direction of the flow is taken as the x-axis. A constant 
magnetic field is acting uniformly in the z-direction. 
The electrodes placed at y = 0 and y = H are main- 
tained at a uniform temperature T,. These electrodes 
are connected to an external load to draw the power. 
The magnetic Reynolds number of the partially ion- 
ized gas as considered in the present case, is very 
small (0 N 10m4) and hence the induced magnetic field 
is neglected in the analysis. The walls perpendicular to 
the z-axis are perfect insulators and they are separated 
sufficiently to make the two-dimensional analysis 
valid. The transport coefficients of the gas, the vis- 
cosity, thermal conductivity, electrical conductivity 
and Hall and ion-slip parameters are taken as func- 

tions of temperature. 
For such a system, the components of velocity V, 

the magnetic field B, the current density J and the 

electric field E are 

v = (u, v, 0) (1) 

B = f&O, B,) (2) 

J = (L&,0) (3) 

E = (E,,S,,O). (4) 

The equations governing such a two-dimensional, 
steady-state flow in nondimensional form [lS] are 
written as 

The variables u, II, p, p, T and the transport 

(5) 
coefficients p, k, u, etc. are nondimensionalized with 
respect to their respective values at the inlet of the 

(8) 

P=PT (9) 
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channel denoted by the subscript zero. For spatial 
coordinates, L, the length of the channel, is used for 
this purpose. Here 

Re = w~W.I (12) 

I = a,B;Ljp,uo (13) 

Pr = ~~&~k~ (14) 

M;: = PcJ&?JP, (15) 

a, = 1 + Be&. (16) 

Making the usual boundary-layer approximations 
that the diffusive effects (due to finite values of p and 
k) are important only in a small layer of thickness 
6 E 0(1/J%) and 

D,_& N O(S) 

while 

equations (5)~(8) are written as 

&PU) + $W) = 0 

~(~~~~~)= --&g 

+a au 
Yjj 

( > 
pjj i- @‘WC - u) 

~(~~+~~)=~~(~~) 

+ty-- l)~~~~(~-~)~~~)] 

+ (y - l)A@r’lK(K - u) 

where 

(17) 

(18) 

(19) 

(20) 

(21) 

and 

h= T+(y- l)M:$ 

K is the load parameter defined as 

E, = KUOB,. 122) 

These equations are solved with the boundary con- 
ditions 

V=li=O, T=T, at j=O (23) 

u-+1(, and T-+T, as j-+m. (24) 

urn, T, and ap/h are to be determined from one- 
dimensional equations for free-stream flow given by 

P&m = 1 (25) 

du, 
dx+ L dp = a’l(K - u,) 

yhf; dx 1261 

= a’r(y - l)MgqK - u,) (27) 

P = P,T, = Tmhm (28) 

and the initial conditions 

p=pm=um=Tm=l at x=0. (29) 

The waI1 shear stress 7, and the Nusselt number 
Nu are defined as 

& 
zw= p- ( > aY y=o 

(30) 

(31) 

(32) 

This completes the mathematical formulation of the 
problem assuming that the variations of JL, k, cr, /?, 
and fii are known for the specified gas. 

SOLUTION PRtXXDURE 

Parabolic equations (19)~+I) with boundary con- 
ditions (23) and (24) are solved nume~~ally foliowing 
the Patankar and Spalding [l l] method with modifi- 
cations. 

First Von Mises’ transformation is used to trans- 
form the equations in terms of (x,ti/) coordinates 
instead of (x, y), where the streamfunction $ is defined 
as 

a* 
PU = ay 

&+ pv= -x 

(33) 

(34) 

so that continuity equation is satisfied automatically. 
Then using the transformation 

uI _ 44XYY) 

GE(X) 

where &(x) = ,& ii/(x, y), equations (20) and (21) are 

written as 

(36) 
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where 

4=u,h 
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where 

A = Atan’( l/A) cos’(~/A) 

2tan(?/A) 

,=_ri!!h 
4b ax 

d= _I’dp+ a’l(K - u) 

pu yM; dx PU ’ 

+ a’lK(K - u) 

1 PU . 

Although this transformation makes the domain finite 
(0 < o < l), the (x,w) coordinate system introduces 
a singularity in the derivative at the wall. To resolve 
this difficulty Berger et al. [18] suggested the trans- 
formation 

w = 1.2 (37) 

so that equation (36) has the form 

Equation (38) can be solved using a finite-difference 
grid which covers all the boundary layers without 
wasting points in the potential area. To improve the 
accuracy of numerical calculations, it was suggested 

that one should take a denser grid in a cross direction 
near the wall where strong velocity gradients occur, 
instead of using the wall functions as suggested by 
Patankar and Spalding [ 111. Hence a variable grid 
with a small mesh size near the wall is suggested. 
Although the transformation (x, I) also gives a certain 
condensation of the mesh near the wall, this is not 
sufficient. Hence the following transformation from 1. 
to q is taken: 

tan($) = i.tan(f) (39) 

where the value of the constant A is chosen judiciously 
to improve numerical efficiency. This is achieved by 
having at least half the grid points in the first percent 
of boundary-layer width and a reasonable number of 
points near the potential flow boundary. 

With the new coordinate system equation (38) is 
transformed as 

(40) 

and 

A = isin(Zq/A). 

NUMERICAL SOLUTIONS AND ALGORITHM 

Equation (40) is solved following a forward time- 
marching scheme and converting the differential equ- 
ation as a difference equation with unequal intervals, 
using a central difference scheme for q and forward 
difference scheme for x. Thus (40) is transformed as 

Ai_,4f_, + Bi_,4: + Ci_,4:+, =Di_[, 

i = 2,3,...,N - 1 (41) 

where N denotes the number of grid points across 
the boundary layer. The expressions for Ai_ 1, Bi_ , , 
C,_ , and Di_, for velocity u and enthalpy h obtained 
fro& equations (36)-(40) ire written as- _ 

A,_, = [bAy’ - c’Ay’ - cA~J’]~ 

Ci 1 = [b?id - c’Aa’ - c/W]~ 

Di_l= d+g 
F 1 

where 

c; = cZ;(cA)i+ 1 + p;(cA)i + yf(cA)i_ * 

Defining 

Hl = vi - qi_1 and H2 = vi+, - vi 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

a’, F, y’ and ti’, p, j’ are given in terms of Hl and H2 

as 

HI -I 2 

ai = H2(Hl + H2)’ % = H2(Hl + H2) 

H2 - Hl 
/I; = ~ 

Hl x H2’ 
8; = -2 

Hl x H2 

-H2 -r ‘2 

yi = Hl(H1 + H2)’ Yi = Hl(H1 + H2)‘ 
(48) 

k denotes the grid points in the streamwise direction. 
As is clear from equations (41)-(46), to know &, 
&’ should be known. Thus 4: can be calculated 
only in terms of #I,!, and hence initial profiles for 
velocity and temperature are needed. In the present 
calculations, the profile given by Taylor et al. [16] 
is used, with very small values of boundary-layer 
thickness 6. 

Equation (41) represents a system of equations with 
a tridiagonal matrix which can be solved easily by 
any standard method. The end points 4: and & are 
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determined from the boundary conditions at the wall 
and at the edge of the boundary layer as given by 
equations (23) and (24). u, and T, for equation (24) 
are obtained by numerically solving equations (25)) 
(28) by the fourth-order Runge-Kutta method. 

The density variation is calculated from the relation 

~=frnTm=~T 

giving p = p,T,/T. 
The normal coordinate y is computed using a 

fourth-order integration algorithm given by 

y{=yi-z +(Hl + H2) 

where 

dy 21//n [l + 1’ tan*(l/A)] 
_- 

& - puA tan(l/A) . (51) 

NUMERICAL RESULTS AND DISCUSSIONS 

The simultaneous system of algebraic equations 
(41), along with equations (42)-(51) is solved numeri- 
cally on computer Cyber-730 system. The integration 
step in the x-direction is taken in such a way that it 
always satisfies the condition 

Ax < S/2. (52) 

The number of grid points across the boundary 
layer are chosen so as to give a good description of 
the viscous layer. For the present calculation, 100 
grid points are taken. But this number can vary 
between 50 and 150 depending upon the nature of 
the problem. For N > 150 or N < 50 oscillations of 
the solution appear, which could be due to computer 
round-off errors. 

Numerical calculations are made for two character- 
istic conditions. The first case (a) deals with the 
supersonic flow of combustion product plasma used 
in open-cycle generators. Typical values are listed in 
Table 1. The second case (b) is for subsonic flow 
of argon-potassium plasma used in nonequilibrium 

generators, whose typical properties are listed in Table 
2. Two values of wall temperature are considered to 
know its effects on the flow. The variation of viscosity 
and thermal conductivity is governed by the relations 

p = 0.24137 + 0.75863T (53) 

k = 0.94777 - 3.58822T + 3.64045T2 (54) 

as given by Rohatgi et al. [17] and 

/le cc T”*, /Ii cc T”z. 

The variation of electrical conductivity is taken as 

,r= 7-r’ (56) 
and 

o=$exp[-12.5909($-*)] (57) 

Table 1. Typical properties of combustion MHD plasma 

Gas combustion products of 
hydrocarbon fuel in air 

Seed potassium = 2.0% (by weight) 
Pressure P, = 3 bar 
Velocity LT, = 15OOms-’ 
Temperature T,=26OOK 
Temperature at the wallT, = 1500, 1250 K 
Magnetic flux density B, = 2 T 
Ratio of specific heats y = 1.2 
Thermal conductivity k, = 0.18kgms-SK~’ 
Electrical conductivity o,, = 11.5 S m- ’ 
Viscosity p0 = 9.625251 x 10m5 kgm-‘s-r 
Molecular weight 30 kg kmol- ’ 
Length 2m 
Load parameter 0.6 

Table 2. Typical properties of argon-potassium plasma 

Gas argon 
Seed potassium = 0.4% (by weight) 
Pressure P, = 1 bar 
Velocity U, = 5OOms-’ 
Temperature T,=2OOOK 
Temperature at the wallT, = 1500, 1250K 
Magnetic flux density B, = 0.2 T 
Ratio of specific heats y = 1.67 
Thermal conductivity k, = 7.60736 x 10-2kgms-3 K-r 
Electrical conductivity o0 = 26.07211 S m-r 
Viscosity cl0 = 9.74055 x 10-5kgm-rs-’ 
Molecular weight 39.94 kg kmol~ ’ 
Length 2m 
Load parameter 0.5 

for combustion product plasma and argon-potassium 
plasma respectively, where 

T, = 0.5T,[l + J(l + O.O0003966u*U;B,$] (58) 

as given in ref. [19]. 

With the above values of the parameters character- 
izing the flow, the variation of the velocity components 
u, u and temperature T in the boundary-layer region 
is obtained, as is discussed below. 

Case (a) 
The free-stream values of u, T and pressure gradient 

for the supersonic flow of the combustion product 
plasma are shown in Fig. 1. As is seen from the graph, 
the velocity decreases rapidly while the temperature 
increases slowly. The axial pressure gradient is positive 
and increases. 

The profiles for u and T progressing along the 
streamwise direction are given in Figs. 2 and 3 for 
the two values of the wall temperature. The profiles 
get more and more curved as the flow progresses. 
There is no significant difference in the profiles when 
the wall temperature is reduced. The flow gradients 
increase marginally and the boundary-layer thickness 
decreases. 

The variation of the skin friction coefficient cr and 
the Nusselt number Nu is plotted in Figs. 4 and 5. 
Both cr and Nu decrease as the flow progresses. When 
the wall temperature is reduced, the Nusselt number 
is reduced and the skin friction coefficient is increased. 
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FIG. 1. Free-stream values of velocity, temperature and 
pressure gradient for combustion product plasma-case (a). 

But the effect of the wall temperature is more on the 
Nusselt number compared to its effect on the skin 
friction coefficient. 

Since the generated power decreases as a result of 
the growth of the boundary layer, for any value of 
x, the generated power is more for T, = 1250K 
compared to T, = 15OOK. Thus the losses due to the 
boundary layer are more compared to the effects 
of the reduced electrical conductivity due to wall 
temperature. With the decrease in the wall tempera- 
ture, the flow separation can also be delayed as the 
skin friction coefficient is increased in this case. 

Case (b) 
The results of subsonic flow of argon-potassium 

plasma with nonequilibrium conductivity are plotted 
in Figs. 6-10. Figure 6 gives the free-stream values of 
the velocity temperature and pressure gradient. In 

X,L 

FIG. 2. Progress of the profiles of velocity and temperature 
for T, = 1500 K for combustion product plasma-case (a). 

this case, the velocity and negative pressure gradient 
increase while the temperature decreases. But as the 
interaction parameters and the Mach number are 
small, the variation is very slow. 

Figures 7-10 show the behaviour of the flow 
variables with respect to axial distance and the wall 
temperature. The general characteristics remain the 
same as for the supersonic flow but the difference in 
the values of the skin friction and the Nusselt number 
for the two wall temperatures is more in this case. 

A comparison of the supersonic and subsonic flows 

show that as a result of the heat friction or the 
conducted heat, the density decreases in the boundary 
layer, which leads to an increase in the boundary- 
layer thickness for the subsonic flows with the same 
Reynolds number. The transverse gradients of the 
flow variables decrease faster for the supersonic case 
compared to the subsonic flow. 

FIG. 3. Progress of the profiles of velocity and temperature for T, = 1250K for combustion product 
plasma-case (a). 
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(a) T,= 15OOK 

(b)Jw=1250K 

FIG. 4. Variation of skin friction coefficient for case (a) with 
T, = 1500 and 1250 K. 

(a) T.,= 1500K 

I 
(b) T, = 1250 K 

@I 

1’3 

FIG. 5. Variation of Nusselt number for case (a) with 
T, = 1500 and 1250K. 
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FIG. 6. Free-stream values of velocity, temperature and 
pressure gradient for argon-potassium plasma-case (b). 
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ECOULEMENT ET TRANSFERT THERMIQUE DANS LE CANAL D’UN 
GENERATEUR DE PUISSANCE MHD 

R&sum&On obtient une solution numerique des equations gouvernant l’ecoulement d’un gaz compressible, 
visqueux, conducteur tlectrique, a prop&es variables, en presence d’un champ magnetique uniforme. Les 
distributions de vitesse et de temperature sont analysees pour des ecoulements subsoniques et supersoniques 

tels qu’ils sont realists dans un generateur MHD. 

STRBMUNG UND WARMEUBERGANG IN EINEM MHD-GENERATOR 

Zusammenfassung-Die Grundgleichungen fiir die Stromung eines elektrisch leitenden, zahen, kom- 
pressiblen Gases mit nichtkonstanten Stoffeigenschaften werden fiir den Fall gel&, da13 ein gleichmil3iges 
Magnetfeld der Gasstromung uberlagert ist. Dabei werden Geschwindigkeits- und Temperatur-Verteilung 

bei Unter- und Uberschall-Stromung in einem MHD-Generator untersucht. 

TEYEHHE FA3A H TEHJTOHEPEHOC B KAHAJTE Ml-A-I-EHEPATOPA 

hoTaun*fIony9etio w.xetnioe pelueHse ypaesesufi, onncbrnaromnx reSenne snexrponpoaonnoro 
BI13KOTO CXQiMBCMOTO Ei3a C IICpCMCHHbIMll CBOfiCTBaMH B OLIHOPOjJHOM MBTHHTHOM IIOJIC. Arranesw- 
p)‘EOTCK paCnpC,.WIeHE,K CKOPOCTB U TCMI’R.paT~bI npH JIlO3ByKOBblX H CBCpX3ByKOBbIX TCWHHlX B 

Kariane MT&reneparopa. 


